Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations
نویسندگان
چکیده
Time harmonic Maxwell equations in lossless media lead to a second order differential equation for the electric field involving a differential operator that is neither elliptic nor definite. A Galerkin method using Nedelec spaces can be employed to get approximate solutions numerically. The problem of preconditioning the indefinite matrix arising from this method is discussed here. Specifically, two overlapping Schwarz methods will be shown to yield uniform preconditioners.
منابع مشابه
Extension of Two-level Schwarz Preconditioners to Symmetric Indefinite Problems TR2008-914
Two-level overlapping Schwarz preconditioners are extended for use for a class of large, symmetric, indefinite systems of linear algebraic equations. The focus is on an enriched coarse space with additional basis functions built from free space solutions of the underlying partial differential equation. GMRES is used to accelerate the convergence of preconditioned systems. Both additive and hybr...
متن کاملSchwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations
We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.
متن کاملAnalysis of Finite Element Approximation and Iterative Methods for Time-dependent Maxwell Problems
Analysis of Finite Element Approximation and Iterative Methods for Time-Dependent Maxwell Problems. (August 2002) Jun Zhao, B.S., Nanjing University, China; M.S., Chinese Academy of Science Chair of Advisory Committee: Dr. Joseph E. Pasciak In this dissertation we are concerned with the analysis of the finite element method for the time-dependent Maxwell interface problem when Nedelec and Ravia...
متن کاملHybrid and Multiplicative Overlapping Schwarz Algorithms with Standard Coarse Spaces for Mixed Linear Elasticity and Stokes Problems
The goal of this work is to construct and study hybrid and multiplicative two-level overlapping Schwarz algorithms with standard coarse spaces for the almost incompressible linear elasticity and Stokes systems, discretized by mixed finite and spectral element methods with discontinuous pressures. Two different approaches are considered to solve the resulting saddle point systems: a) a precondit...
متن کاملOptimized Schwarz Methods for Maxwell equations
Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 72 شماره
صفحات -
تاریخ انتشار 2003